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TECHNICAL ADVANCE Open Access

The impact of test loads on the accuracy of
1RM prediction using the load-velocity
relationship
Mark G. L. Sayers1* , Michel Schlaeppi2, Marina Hitz2 and Silvio Lorenzetti2,3

Abstract

Background: Numerous methods have been proposed that use submaximal loads to predict one repetition
maximum (1RM). One common method applies standard linear regression equations to load and average vertical
lifting velocity (Vmean) data developed during squat jumps or three bench press throw (BP-T). The main aim of this
project was to determine which combination of three submaximal loads during BP-T result in the most accurate
prediction of 1RM Smith Machine bench press strength in healthy individuals.

Methods: In this study combinations of three BP-T loads were used to predict 1RM Smith Machine bench press
strength. Additionally, we examined whether regression models developed using peak vertical bar velocity (Vpeak),
rather than Vmean, provide the most accurate prediction of Smith Machine bench press 1RM. 1RM Smith Machine
bench press strength was measured directly in 12 healthy regular weight trainers (body mass = 80.8 ± 5.7 kg). Two
to three days later a linear position transducer attached to the collars on a Smith Machine was used to record
Vmean and Vpeak during BP-T between 30 and 70% of 1RM (10% increments).

Results: Repeated measures analysis of variance testing showed that the mean values for slope and ordinate
intercept for the regression models at each of the load ranges differed significantly depending on whether Vmean or
Vpeak were used in the prediction models (P < 0.001). Conversely, the abscissa intercept did not differ significantly
between either measure of vertical bar velocity at each load range. The key finding in this study was that 1RM
Smith Machine bench press strength can be determined with high relative accuracy by examining Vmean and Vpeak
during BP-T over three loads, with the most precise models using Vpeak during loads representing 30, 40 and 50%
of 1RM (R2 = 0.96, SSE = 4.2 kg).

Conclusions: These preliminary findings indicate that exercise programmers working with normal healthy
populations can accurately predict Smith Machine 1RM bench press strength using relatively light load Smith
Machine BP-T testing, avoiding the need to expose their clients to potentially injurious loads.

Keywords: Strength assessment, Dynamic strength, Predictive models, Bench press throws

Background
The quantification of the maximum load that can be lifted
through a full range of motion, or one repetition maximum
(1RM), is fundamental to the design of resistance training
programs [1]. Typically, 1RM is either measured directly or
calculated indirectly using predictive models. The direct
determination of 1RM suffers from a number of pragmatic

issues as it is not only time consuming, but the outcome is
effected by factors such as athlete experience, technique,
fatigue and motivation [2]. Traditional 1RM testing is con-
sidered to be safe when it is conducted in appropriate set-
tings under the supervision of qualified practitioners [3, 4].
Regardless, this 1RM exposes athletes to large musculoskel-
etal forces, and there is some evidence that 1RM testing
can be potentially injurious [5, 6] and may also be impracti-
cal with novices and/or in clinical settings [7].
Indirect methods for 1RM quantification tend to

follow two different protocols, both of which rely on the
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use of linear regression modelling. The most common
indirect protocols involve lifting submaximal loads to
failure [7–9], a procedure that is relatively common in
trained athletes [10] and in agreement with the ACSM
guidelines of 8–12 repetition that is often used in a clin-
ical setting, but rare in everyday activities. Although
relatively easy to administer, the accuracy of these ‘lift to
failure’ models is also influenced by elements such as
age, training experience, motivation and lifting tempo
[7–9, 11]. The prediction of 1RM using these methods
appears to be more accurate when heavier loads are used
[12–14], with the optimal number of repetitions for
these prediction models being less than 10 [8]. Accord-
ingly, these protocols potentially suffer from the same
limitations associated with 1RM testing, with the need
to lift high relative loads whilst fatigued. Additionally,
these lift to failure protocols are also likely to generate
post exercise muscle soreness in novices [15], potentially
dissuading them from future exercise participation.
Alternative indirect methods rely on the load-velocity

[6, 16] or force-velocity [10, 11, 17–19] relationships and
linear or quasi linear models to predict 1RM from a
series of maximal effort lifts with submaximal loads.
These protocols use either isoinertial sensors or linear
position transducers that are attached to the collars or
bar of training devices like Smith Machines to record
force, average and/or peak vertical lifting velocity data
from the concentric phase of movements like jump
squats or bench press throws (BP-T). Although these
movements are more common in high performance
training programs, the use of a Smith Machine and ap-
propriately trained “Spotters” means that these exercises
can be completed safely with novice participants (NB:
some Smith Machines contain a pneumatic brake which
prevents the bar from descending rapidly – hence im-
proving exercise safety). Although 1RM data recorded
on Smith Machines are typically 10% higher than those
recorded using free weights, there are no significant
differences between predicted 1RM values when using
these devices [20]. These protocols also have the advan-
tage of being relatively quick to perform as they involve
loads between 30 and 80% of 1RM [11, 16, 21] being
lifted as rapidly as possible for only 2–4 repetitions.
Accordingly, the overall loading in these protocols is less
than ‘lift to failure’ protocols and so the risk of injury
may be decreased, particularly when applied to relatively
untrained populations [16].
Arguably, the simplest of the load-velocity models [16]

applies standard linear regression equations to load and
mean vertical propulsive lifting velocity (Vmean) data
from three different loads to develop slope, abscissa
(Load0) and ordinate (Vmean0) intercept data. Import-
antly, variables such as Vmean or peak vertical velocity
(Vpeak) can be measured using relatively inexpensive

technology that, due to large reductions in pricing, is
becoming increasing accessible to strength coaches. Re-
searchers report high correlations using this methods
between Load0 and 1RM bench press (r = 0.98, n = 112,
SEE = 4 kg [7%]), although the strength of this relation-
ship is no doubt influenced by the large range in relative
loads assessed (30 to 95% of 1RM) [16, 22]. Additionally,
participants in the study by Jidovtseff and co-workers
[16] were required to always hold the bar (i.e. prevented
from performing a BP-T), which will have a marked ef-
fect on Vmean due to the deceleration of the bar near the
end of the lift [23]. Nevertheless, some questions remain
as to whether Vmean or Vpeak provides superior predict-
ive measures. Recently, Gracia-Ramos and co-workers
[24] report that Vmean during Smith Machine bench
press is a superior predictor of 1RM when compared to
Vpeak. However, these findings appear to be specific to
the testing protocols as these researchers highlight in
another study that Vpeak during bench press throws is
the superior predictor of 1RM [25]. Regardless, Vmean

and Vpeak appear to be greater predictors of optimal load
for power training than traditional methods that advo-
cate percentages of 1RM [26].
Nevertheless, the question remains as to the efficacy of

the procedures proposed by Jidovtseff and co-workers
[16], particularly when testing novice or inexperienced
weight trainers for which higher lifting loads may be
contraindicated. Therefore, it is important to determine
whether such high relative loads are required during
these submaximal test protocols (i.e. up to 95% of 1RM)
and which combination of relative loads result in the
most accurate predictive model of 1RM bench press
strength. Accordingly, the purpose of this study was to
use the prediction model developed by Jidovtseff and
coworkers [16] to determine which combination of three
submaximal loads during BP-T result in the most accur-
ate prediction of 1RM Smith Machine bench press
strength in healthy individuals. We also examined
whether the ability to release the bar during the BP-T
changes the nature of the prediction model. Addition-
ally, we examined whether Vmean or Vpeak provides a
better prediction of Smith Machine bench press 1RM
strength in these participants.

Methods
Experimental approach to the problem
To determine which combination of three loads during
BP-T results in the most accurate prediction of 1RM
bench press strength we tested 12 healthy, regular
weight trainers on two separate occasions. On the first
occasion 1RM bench press strength was recorded using
standard procedures and recorded to the nearest 1 kg
[27]. During the second data collection (2–3 days after
the first testing session) participants performed three
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repetitions of BP-T at loads representing 30, 40, 50, 60
and 70% of their 1RM. We then processed these
load-velocity BP-T data using the techniques proposed
by Jidovtseff and coworkers [16] to determine which
three load range (30–50% of 1RM, 40–60% of 1RM,
50–70% of 1RM) resulted in the most accurate pre-
diction of 1RM bench press strength. We also exam-
ined whether BP-T Vmean or Vpeak provides a more
accurate prediction of bench press 1RM by comparing
each of the models developed using these variables.

Participants
Participants for this study (n = 12) were all recreational
weight trainers who had been weight training at least
twice a week for a minimum of 1 year (body mass (BM) =
80.8 ± 5.7 kg, 1RM 84 ± 18 kg, relative 1RM =1.04 BM [i.e.
relative load is represented as a function of BM]). None of
the participants were involved in heavy load strength
training. Participants were informed of the experimental
procedures and risks and provided their written informed
consent prior to attending several familiarisation sessions.
This research was approved by the institutional Human
Research Ethics Committee (No. 2012-N-10).

Procedures
All bench press and BP-T data were collected on a
standard Smith Machine. This machine was modified
with a custom made magnetic braking system as a safety
mechanism. Once the bar was released this safety mech-
anism prevented it from falling back on the participant

[2]. The bar handle was attached permanently to this
braking system, resulting in a total weight of 23 kg. To
record the vertical position of the bar a linear position
transducer (LPT) (WS17KT, ASM, Moosinning, Germany)
was installed on the Smith Machine’s pneumatic brake,
with data subsequently sampled at 1000 Hz, A/D con-
verted and stored on a computer, Subsequent data analysis
of the LPT measurement were performed in MATLAB,
with velocity data developed from the raw LPT outputs
using the first central difference method.
The BP-T testing was conducted in accordance with

well-established protocols [23, 28, 29] at loads represent-
ing 30, 40, 50, 60 and 70% relative to 1RM. The execu-
tion order was determined randomly using Microsoft
Excel in order to avoid possible order effects during the
testing session. In order to minimise the effects of
fatigue there were 2–4 min between repetitions with
three repetitions completed at each load. The eccentric
phase was at a self-chosen speed, with the participants
required to wait for the start signal before commencing
the concentric motion [30]. There was approximately at
2 s pause between the eccentric and concentric phases.
The Vmean, and Vpeak and maximum bar acceleration

were calculated from the first and second differentials of
the linear transducer data. These data were then used to
develop a linear regression model for the prediction of
1RM [16] (Fig. 1). We subsequently developed slope,
Load0 and Vmean0 data for each of these regressions
models over each of the load ranges (i.e. 30–50% 1RM,
40–60% 1RM and 50–70% 1RM).

Fig. 1 Sample data from one subject, three loads (solid circles) processed using standard load-velocity techniques [16]. Graph includes the
regression line and the calculated peak mean vertical velocity (Vmean0), theoretical load at 0 m/s (Load0) and average vertical lifting velocity
(Vmean) at 1RM
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Statistical analyses
The influence of load on the various bar kinematic vari-
ables were determined via a series of repeated measures
analysis of variance (ANOVA) tests. Post-hoc analyses
were undertaken using paired t-Test with Bonferroni
corrections. Shapiro-Wilk and Mauchly’s test of sphericity
were applied during all ANOVA testing. Where data
violated the sphericity assumption Greenhouse-Geisser
corrections were applied. The relative magnitude of
differences were quantified using standard Cohen’s Effect
Size (ES) analyses, with the following descriptors used to
define the relative magnitude of the ES: < 0.2 = trivial,
0.2–0.6 = small, 0.6–1.2 =medium/moderate, 1.2–2.0 =
large, and > 2.0 = very large [31]. The predictive accuracy
of the model developed by Jidovtseff and coworkers [16]
was assessed using the three lightest loads (30–50% 1RM),
the three middle loads (40–60% 1RM) and the three
heaviest loads (50–70% 1RM), with these data then com-
pared with the measured 1RM values. Bland-Altman plots
were used to assess whether there were any levels of bias
in any of the models, with simple t-tests used to assess for
differences between the actual and predicted values. The
coefficient of variance (CV%) and the intra class correla-
tions (ICC, 3,1) for the predicted versus the measured
1RM were also calculated. Statistical analysis were per-
formed using the statistics package SPSS for Windows
(version 20), with a confidence level of 95%. All data are
presented at means ±1 standard deviation (SD) unless
stated otherwise.

Results
ANOVA testing indicated that Vmean and Vpeak both
showed large, significant reductions (P < 0.001, ES > 1.2)
for each respective increase in relative BP-T load, except
for Vmean between 40 and 50% of 1RM (Fig. 2). Results
also showed that the mean values for slope and Vmean0
at each of the load ranges differed significantly depend-
ing on whether Vmean or Vpeak were used in the predic-
tion models (Table 1). Conversely, Load0 data did not
differ significantly between either bar velocity measures
at each load range. The CV% values range from 7.2 up
to 27.5% (Table 2), with the ICC (Table 3) data show
excellent reliability for Vpeak at the lightest range weight
whereas only moderate reliability was observed for the
weights between 40 and 60%. All other cases showed
good reliability. Typically, greater levels of acceptable re-
liability [32] were recorded for Vpeak compared to Vmean.
There were no noticeable differences in any of the

models that used Vmean to predict 1RM Smith Machine
bench press strength (R2 between 0.85–0.89). Similarly,
there were no significant differences between predicted
and actual 1RM Smith Machine (P = 0.21 to 0.95) when
using Vmean, although the corresponding Bland-Altman
plots highlighting some issues with the accuracy of these
data (Fig. 3). Conversely, there were significant differ-
ences between the predicted and actual 1RM Smith
Machine bench press values when using Vpeak at the
lightest of the load ranges to (P < 0.001). However, the
predicted 1RM values for Vpeak for these light relative

Fig. 2 Mean (1SD) mean (Vmean) and peak bar (Vpeak) vertical velocities at each of the relative loads. * Indicates data significantly different
(P < 0.01) than the other loads
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loads (30, 40 and 50% of 1RM) resulted in the most
accurate prediction of 1RM bench press strength (Fig. 4),
although there was a constant fixed bias towards under
estimating 1RM by approximately 9 kg.

Discussion
This study used the well-established linear-regression
techniques proposed by Jidovtseff and coworkers [16] to
examined which combination of three relative submaxi-
mal loads during BP-T testing results in the best predic-
tion of 1RM Smith Machine bench press strength. We
also examined whether regression models developed
using Vpeak, rather than the variable suggested by these
researchers (Vmean), provide the best prediction of bench
press 1RM. Finally, we examined whether performing a
BP-T (instead of an explosive bench press) influences
the nature of the regression model when using either of
these bar velocity measures.
This study builds upon the findings of Gracia-Ramos

and co-workers [24, 25], highlighting that 1RM bench
press strength on a Smith Machine can be determined
with acceptable levels of precision by examining Vmean

and Vpeak during Smith Machine BP-T over three sub-
maximal loads. Perhaps even more importantly, our data
suggests that the best and most reliable prediction
model was based on relative loads representing just 30,
40 and 50% of 1RM. Importantly, as the prediction is

robust for the light relative loads, a rough estimate of
the 1RM appears to be sufficient for this method.
Although a fixed bias exists to under predict 1RM by
approximately 9 kg with using these loads, the accuracy
of the model to predict Smith Machine bench press
1RM when using Vpeak during BP-T is quite high. Add-
itionally, the high precision of this regression model is at
least comparable to other established prediction proce-
dures that use more time-consuming protocols and/or
also possibly have a greater potential for injury or soreness
[5, 7–9, 12–15]. From a practical perspective, our findings
suggest that there is no need to test over heavy relative
and absolute loads [5, 6] when using the force-load tech-
nique to estimate Smith Machine 1RM in recreational and
novice level weight trainers [5, 7, 8, 12, 14].
The finding that bar velocity data decreases with

increasing relative load is not unique and simply con-
firms the standard exponential force velocity profile
first developed by Hill [33] nearly 80 years ago. Our
data for Vmean does however contain an anomaly at
50% of 1RM (Fig. 2), suggesting that the Vmean may be
too gross a measure to be able to detect known
changes in performance that occur across our load
ranges. Similarly, our results also suggest that Vpeak is
a more effective measure than Vmean when using this
technique to predict 1RM in regular (but non-athletic)
weight trainers with a mean 1RM Smith Machine
bench press approximately equivalent to 1 body
weight. While these findings are agreement with earl-
ier research [20, 25] other studies favour Vmean [24, 26],
highlighting that the specific loading regime influences
this outcome.

Table 1 Mean (±1SD) values of the slope, abscissa (Load0) and ordinate (Vmean0) intercept data for each regression line developed
using both Vmean and Vpeak across the three loading ranges

Variable Percent of 1RM

30–50% 40–60% 50–70%

Slope using Vmean −2.02 (0.52)a −1.76 (0.31)a −1.97 (0.46)a

Slope using Vpeak −3.85 (0.42) −2.93 (0.71) −2.81 (0.63)

Load0 using Vmean (% of 1RM) 91.9% (15.3) 99.6% (14.9) 103.1% (14.0)

Load0 using Vpeak (% of 1RM) 89.6% (7.7)b 107.8% (23.8) 106.6% (10.2)

Vmean0 using Vmean (m/s) 1.98 (0.22)a 1.84 (0.15)a 1.97 (0.31)a

Vmean0 using Vpeak (m/s) 3.47 (0.25) 3.05 (0.41)a 2.97 (0.41)a

aIndicates values differs significantly (P < 0.01) from Vpeak at that load range
bIndicates values differ significantly from the actual 1RM at that load range

Table 2 CV% values of the slope, abscissa (Load0) and ordinate
(Vmean0) intercept data for each the regression lines developed
using both Vmean and Vpeak across the three loading ranges

Variable Percent of 1RM

30–50% 40–60% 50–70%

Slope using Vmean 25.7 17.6 23.4

Slope using Vpeak 10.9 24.2 22.4

Load0 using Vmean (% of 1RM) 16.6 15.0 13.6

Load0 using Vpeak (% of 1RM) 8.6 22.1 9.6

Vmean0 using Vmean (m/s) 11.1 8.2 15.7

Vmean0 using Vpeak (m/s) 7.2 13.4 13.8

Table 3 ICC measured versus predicted 1RM

Variable Percent of 1RM

30–50% 40–60% 50–70%

Vmean 0.868 (0.558–0.966) 0.855 (0.521–0.962) 0.849 (0.506–0.960)

Vpeak 0.967 (0.890–0.990) 0.680 (0.204–0.896) 0.867 (0.604–0.960)
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Our Vpeak data are similar to data from physically ac-
tive collegiate men performing a similar BP-T task [21],
with values between studies differing by less than
0.07 m/s at similar loads. Conversely the slope and
Vmean0 data from our models using Vmean to predict
1RM differ considerably from values from the original
research using this method [16]. No doubt this is a func-
tion of the protocols adopted by these researchers that
prevented the participants from releasing the bar (hence
performing a dynamic bench press and not a BP-T per
se). The use of this approach by these researchers is
somewhat surprising as their Vmean data would have
been effected by a pronounced bar deceleration near the
end of the movement [23] and so the accuracy of these
data could be optimised. Importantly, Vpeak during BP-T
testing is not only reliable (CV% values between 1.7 and
3.3), but also presents with smaller CV% values than for
dynamic bench press movements [21, 25]. From a prac-
tical stand point Vpeak is relatively simple to quantify, as
it can be measured using inexpensive devices (e.g. op-
tical encoders or linear position transducers), or esti-
mated using bar throw height. These approaches can be
adopted easily in health clubs or commercial gymna-
siums and provide acceptable predictions of 1RM that
can be used in the development of more effective train-
ing programs.

We acknowledge that our testing was based on a
relatively small sample of a diverse but specific
population of beginning weight training adults, how-
ever these samples sizes are relatively common in
this domain. Additionally, our sample characteristics
are typical for many healthy individuals who attend
health clubs and/or commercial strength training
facilities. We also acknowledge that it the accuracy
of regression models that attempt to predict values
outside of the range of the collected data is severely
compromised. However, this process is fundamental
to all research in this domain and so largely un-
avoidable. Importantly, we have not suggested that
the protocols presented in this project offer an exact
estimate of a participant’s Smith Machine 1RM
bench press.

Conclusions
Our results suggest that within this target population
reliable estimates of Smith Machine 1RM bench press
strength can be achieved using the load-velocity ap-
proach with BP-T loads between 30 and 50% of 1RM.
We do however acknowledge that the reliability and
accuracy of the velocity based method presented here
can suffer from fatigue or lack of motivation of the
athletes. However, issues such as these are systemic in

Fig. 3 The top row represents the three models to predict 1RM Smith Machine bench press based on mean vertical lifting velocity (Vmean). The
left models are for the loads representing 30–50% of 1RM (●), the middle models for loads 40–60% of 1RM (♦) and the right models for loads
representing 50–70% of 1RM (▲). The second row represents the respective Bland-Altman plots for each loading group
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nearly all strength assessment protocols and can be
managed with appropriate testing regimens. We also
acknowledge that these data are specific to Smith
Machine bench press and BP-T, and may not be
transferable to conventional free weight testing. Fu-
ture research should attempt to confirm these results
with a larger sample of participants and conduct ap-
propriate between session reliability assessments. Add-
itionally, it would also be appropriate prospectively
compare the incidence of soreness and injury between
the methods proposed in this study and traditional
1RM determination.

Practical applications
Conventional 1RM bench press strength testing ex-
poses people to very high relative loads. Our findings
indicate that in normal healthy populations bar velocity
data recorded during relatively light load Smith Ma-
chine BP-T testing can be used to accurately predict
1RM Smith Machine bench press strength. The large
range in the submaximal load range allows practitioners
to estimate the 1RM as start point by using a team
average, last season values or a weight dependent 1RM
to define the submaximal test weights. Additionally, it
is simple to determine Vmean and Vpeak during BP-T
testing and the linear regression models are easy to

apply. Importantly, our results show that the most ac-
curate and reliable models are created from BP-T Vpeak

data (not Vmean), a variable that developed with min-
imal post-testing processing, from loads representing
just 30, 40 and 50% of 1RM. Using the approach de-
scribed in our study exercise programmers can predict
1RM Smith Machine bench press strength and monitor
performance enhancement with acceptable accuracy
without the need to expose their clients to extremely
heavy loads, or lift to fatigue protocols.
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