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Abstract: Energy pumping is a way to gain kinetic energy based on an active vertical center of mass
movement in rollers in sports like skateboarding, skicross, snowboard cross and BMX. While the
principle of the energy transfer from the vertical movement to the horizontal movement is well
understood, the question of how to achieve the optimal energy transfer is still unresolved. In this
paper, we introduce an inverse pendulum model to describe the movement of the center of mass
of an athlete performing energy pumping. On this basis, the problem of identifying the optimal
movement pattern is formulated as an optimal control problem. We solve the discretized optimal
control problem with the help of a SQP-algorithm. We uncover that the optimal movement pattern
consists of a jumping, flying, and landing phase, which has to be timed precisely. We investigate
how the maximal horizontal speed depends on parameters like rollers height and maximal normal
force of the athlete. Additionally, we present a qualitative comparison of our results with measured
results from BMX-racing. For athletes and coaches, we advice on the basis of our results that athlete’s
performance is optimized by using maximal force and adopt an exact and proper timing of the
movement pattern.

Keywords: energy pumping; ski-cross; BMX-racing; optimal control theory; SQP-algorithm; center
of mass movement; rollers; digital technology; sports

1. Introduction

In many sports like skateboarding, BMX, ski/snowboard cross, the racing track in-
cludes wave wells, moguls or rollers. The aim for the athlete is to loose as little time as
possible and exit the rollers with a high speed. Here, the potential energy as well as specific
movements of the center of mass (energy pumping) can be used to gain speed. For BMX
racing the surprisingly high importance of energy pumping has been demonstrated in
experiments [1].

Here we define energy pumping as all active and targeted movements of the center
of mass of the athlete to generate kinetic energy in sports like skateboarding, skicross,
snowboard cross, BMX and gymnastics. The energy transfer is common in sports eq.
gymnastics [2] or sailing [3]. Also a swing can be pumped with vertical movements of the
center of mass [4,5]. While descending a slope, the force in the direction of the slope can be
used for acceleration and results in a larger speed. This accelerating force can be enlarged
by a rise of the normal force during vertical acceleration of the center of mass.

In recent years, some progess has been made by formulating biomechanical problems
as optimal control problems [6–9]. In this paper, the problem of identifying the optimal
movement pattern for athlete’s energy pumping on a one-dimensional track is formulated
as an optimal control problem, which is standard in the framework of optimal control
theory [10]. The discretized optimal control problem turns out to be a high-dimensional
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nonlinear program (NLP). In this formulation, the athlete’s optimal movement pattern is
a solution of the KKT-equations [11], derived from the NLP, in a high-dimensional real-
valued space. The task to find these KKT-points in high-dimensional spaces is in practice
extremely challenging. More precisely, it is far beyond what humans can do without help.

Since not so long ago, the SQP-algorithm, as proposed by Han, and Powell [12,13],
and Schittkowski [14], has been shown to be able to identify KKT-points in the high-
dimensional real-valued search space. In practice, the SQP-algorithm, running on a com-
puter, can find KKT-points in spaces with several hundred or thousands dimensions. But,
the effort to find these solutions is tremendous and without the help of computers, we were
not able to find those. Also the optimal movement patterns, which will be presented in this
paper, would not be accessible without the help of computers, which perform step-by-step
intelligent numerical mathematics procedures. As such, the SQP-method is considered for
good reasons as one tool out of the rich toolbox of artificial intelligence.

Historically, as the SQP-method was increasingly available to the scientific and engi-
neering community and the 1990’s and 2000’s, it enlarged the set of problems, which can be
solved. No wonder that the SQP-method was used in several engineering disciplines, like
radio frequency design [15], wind turbine airfoil design [16], turbine design [17], mechani-
cal engineering [18], and 2D airfoil design [19], to identify optimal designs, not known to
engineers until then.

The optimal vertical movement during energy pumping including friction and dif-
ferent forms of moguls is not well understood. Therefore the aim of this work is to build
a model based on the law of motions and find the optimal path.

2. The Inverted Pendulum Model and the Optimal Control Problem
2.1. The Inverted Pendulum Model

Inverted-pendulum models are proven tools as a simplified description of complex
human movements [20,21]. To our knowledge, an inverted-pendulum-model for the
energy pumping performed by an athlete has not been reported elsewhere. Therefore,
we will present the model in detail in this section. We consider a one-dimensional track
of length L with a height profile z = u(x), 0 ≤ x ≤ L. The athlete moves in positive
x-direction. The local slope of the track is u′(x) and the angle between the x-axis and the
track is φ(x) = arctan(u′(x)). The vector ~N is the upwards-pointing normal vector on the
track u(x):

~N(x) = (− sin(φ(x)), cos(φ(x)) ), (1)

which we will call track normal unit vector in the following.
We model the athlete, including his equipment, as an inverted pendulum, moving

from x = 0 to x = L:

1. The athlete, including his or her equipment, has a single contact point

~s(t) = ( x(t), u(x(t)) ), (2)

at which he is in contact with the track for all times (see Figure 1). From now on, we
will write athlete only, instead of athlete, including his or her equipment for simplicity.
The athlete’s mass is concentrated in the center of mass (COM) located at

~r(t) = ( rx(t), rz(t) ). (3)

2. The body axis of the athlete is modelled as a straight line between the contact point
positioned at~s(t) and the COM positioned at~r(t). The straight line is considered as
a stiff bar in the sense that forces can be transferred to the COM from the contact
point along the straight line.

3. The body axis is always perpendicular to the track. Therefore, the vector ~h(t) =

~s(t)−~r(t) is perpendicular to the track, and parallel to ~N(x(t)). The length of~h(t)
we call effective body height: h(t) = |~h(t)|. With this, the location of the COM can
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be computed from the location of the contact point and the effective body height:
~r(t) = ~s(t) + h(t) · N(x(t)). As the athlete bends and stretches his body, he or
she can vary his or her effective body height between the minimum effective body
height hmin (body bent maximally) to the maximal effective body height hmax (body
stretched maximally).

4. As the athlete moves along the track, a normal force acts from the track to the ath-
lete’s COM. This force acts along the body axis, from the contact point to the COM.
Therefore, the athlete in our model has to make sure that his or her body axis is
exactly parallel to the normal forces. This is in contrast to some sports like cycling,
or skiing, there the athlete can balance forces by leaning backward or forward, since it
equipment (ski, bike) provides an extended contact line, or several isolated contact
points, between the athlete and the track.

With this, we arrive at a 2-dimensional dynamical problem for the movement of the
COM with:

~v = ~̇r, ~a = ~̈r, v = |~v|, a = |~a|. (4)

Additionally, we introduce (a) the trajectory tangential unit vector ~T(~̇r), which is
tangential to the movement of the COM for all times, and (b) the trajectory normal unit
vector ~R(~̇r,~̈r), which points from the COM to the middle of the curvature circle.

~T(~̇r) =
~v
v

, (5)

~R(~̇r,~̈r) =
~̇T

|~̇T|
, |~̇T| 6= 0. (6)

The curvature of the COM’s path, defined as the inverse of the curvature radius, is:

k(~̇r,~̈r) =
|~v×~a|

v3 (7)

Now, let us consider the forces, respectively accelerations, acting on the athlete’s COM.
These are gravity, friction, body force, and centrifugal forces. The gravity force, respectively
acceleration is (see Figure 2):

~FG =

(
0
−mg

)
, ~aG =

(
0
−g

)
(8)

The centrifugal force, respectively acceleration is given by:

~FZ(~̇r,~̈r) = mv2k(~̇r,~̈r)~R(~̇r,~̈r), ~aZ(~̇r,~̈r) = v2k(~̇r,~̈r)~R(~̇r,~̈r). (9)

By stretching or folding his or her body along the body axis, the athlete is able to apply
an additional force to the movement of the COM, which we call body force from now on.
In the model presented, the athlete can only provide forces parallel to his or her body axis.
Hence, the body force acts in the direction of the track normal unit vector ~N.

~FN(t,~r) = FN(t) · ~N(~r) = m · aN(t) · ~N(~r). (10)

For any time, we assume: (a) the body acceleration aN(t) cannot be negative, and
(b) the body acceleration cannot be larger than a maximal value amax

N , since the physical
strength of the athlete is finite. Therefore, the restriction: 0 ≤ aN(t) ≤ amax

N holds for
all times.
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Figure 1. Inverted pendulum model for athlete’s movement along the track with height profile
u(x) (thick line). Dashed line: Trajectory of the COM (full circle). The contact point is shown as an
open circle.

In the model we introduce two friction forces, the air friction and the sliding or
rolling friction:

~FR(t,~r,~̇r) = −[µFN(t,~r) + mα(~r,~̇r)]~T(~̇r). (11)

The air friction is modelled with a simple Newtonian ansatz leading to frictional force
with a quadratic law in v:

α(~r,~̇r) =
cwρA(~r)v2

2m
, (12)

with cw athlete’s cw-value, ρ density of the medium (in our case: air), and a time-dependant
cross-sectional area A(t) of the athlete. We model the variation of the cross-sectional area
with the effective body height with the help of a simple linear law:

A(~r) =
Amax

hmax
· h(~r), (13)

with Amax being the athlete’s cross-sectional with a fully stretched body. The sliding or
rolling friction is modelled to be proportional to the normal force with the coefficient µ.

We are now in the position to establish the equations of motion for the movement of
the COM with the help of Newton’s law:

m~̈r = ~FR(t,~r,~̇r) + ~FG + ~FN(t,~r) + ~FZ(~̇r,~̈r), (14)

As a result we can derive an implicit non-autonomous set of second order differential
equations for the movement of the COM, by applying the expressions for the accelerations
as derived earlier in this paper:

~̈r = −[µaN(t) + α(~r,~̇r)]~T(~̇r) + v2k(~̇r,~̈r)~R(~̇r,~̈r) + aN(t) · ~N(~r) +~aG, (15)

with either:

1. initial conditions:
~̇r(0) = ~v0, ~r(0) =~r0, (16)

2. or circular conditions:
~̇r(0) = ~̇r(τ), ~r(0) =~r(τ). (17)

With circular conditions (17), we model a situation in which the athlete moves on
a periodic track, where the shape of the track repeats itself over-and-over again (with
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infinite length). With initial conditions (16), we model a situation in which the athlete
moves on a track with finite length L only once.

Note the implicitness of the set of differential Equation (15), since ~̈r appears on the
left-hand side and the right-hand side of the equations. Therefore, straightforward ODE-
solvers like Runge-Kutta-schemes, implementing a discretization in time, cannot be used
for the numerical solution. As we will solve (15) as constraints to an optimization problem
(to be shown later in this paper), the implicit nature of (15) is taken care of in a straightfor-
ward way.

We are interested in the solution of the set of ODEs for 0 ≤ t ≤ τ with x(τ) = L.
For initial conditions, τ is the time to complete the track of length L. For circular conditions,
τ is the time to complete a single period of length L of the track (which has infinite length).

Note that the body acceleration aN(t) acts as an external driver, or external force, on the
ODE-system (15) and needs to be fixed prior to the solution. As such COM’s trajectory
~r =~r[aN ] is a functional of aN(t). The same is true for the completion time τ = τ[aN ].

It is important to note, that not all set of parameters, initial conditions, and body ac-
celerations aN(t) lead to solutions, which satisfiy the implicit constraint hmin ≤ h(t) ≤ hmax.
Therefore, we restrict the set of parameters, initial conditions, and body accelerations aN(t)
to those who give rise to solutions which satisfy the implicit constraint. hmin ≤ h(t) ≤ hmax.

Figure 2. The movement of the COM (full circle) along his continuous path (dashed line) of the
movement of the COM (full circle). The contact point is shown as an open circle.

2.2. The Optimal Control Problem

The aim of this paper is to identify the optimal movement pattern for energy pumping
under variation of the relevant parameters such aus athlete’s mass, friction or the shape of
the track. The optimal movement pattern is defined as the one, which results in the fastest
completion of the track, or, which gives the smallest overall time for track completion τ.

The athlete’s degree of freedom to modify the movement pattern is the acceleration
aN(t), which encompasses the body movement of the athlete, including the variation
of athlete’s cross sectional area A(t) = A[aN ](t), since the latter is also a functional of
aN(t). This leads to a time-continuous optimal control problem with the function aN(t) as
functional design variable:
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τ∗ = min
aN(t)

τ[aN ], (18)

hmin ≤ h[aN ](t) ≤ hmax, 0 ≤ t ≤ τ, (19)

0 ≤ aN(t) ≤ amax
N , 0 ≤ t ≤ τ, (20)

~̈r = −[µaN(t) + α(~r,~̇r)]~T(~̇r) + v2k(~̇r,~̈r)~R(~̇r,~̈r) + aN(t) · ~N(~r) +~aG, (21)

x(τ) = L (22)

Additionally, we apply either initial value conditions (16) or circular conditions (17) to
the ODE.

In less mathematical terms, the meaning of the optimization problem (18)–(22) is: Find
the time-dependant body acceleration aN(t) such that the track u(x) is completed as fast as
possible starting from x = 0 to x = L, taking into account all restrictions imposed on the
problem. The solution of the optimization problem delivers the optimal acceleration a∗N(t),
the minimal possible completion time τ∗, as well as the optimal trajectory of the COM of
the athlete (~̇r∗,~r∗). All three together, forces and trajectory, defines the optimal movement
pattern of the athlete.

In order to solve the optimal control problem, we discretize the model in space.
To this end, we introduce the equidistant discretization of the x-coordinate of the contact
point with an interval ∆x: xs

i = (i − 1)∆x, i = 1, . . . N with N = L
∆x + 1. The track is

discretized as~si = (xs
i , u(xs

i )), also φi = arctan(u′(xs
i )) and the discretized normal vector

is ~Ni = (− sin(φi), cos(φi)). Accordingly, discretizations apply as: hi = h(xs
i ) und

~ri =~si + hi · ~Ni. As such, the continuous movement of the COM~r(t) is approximated by
an polygonal line (see Figure 3).

Figure 3. Polygonal line (dashed line) of the movement of the COM (full circle). The base points are
shown as open circles.

On this basis, we define (3N − 1) design variables (hi, vi, ai
N) for the time-discrete

optimal control problem, with hi = (h1, . . . , hN), vi = (v1, . . . , vN−1), ai
N = (a1

N , . . . , aN
N).

Here, vi is the magnitude of the velocity as the COM moves from~ri to~ri+1. From the
design variables together with the parameters all dynamical variables can be computed.
The discretized version of accelerations (ai

x, ai
z) are computed with the help of first-order

finite differences from the velocities. With this, the discretized versions of the tangential
and radial vectors are computed. The time for the COM to move from i to (i + 1) is:

∆τi =
|~ri+1 −~ri|

vi (23)

The overall time τ with x(τ) = L, which is needed to complete the track, can be
computed as a sum of N − 1 time steps:
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τ(hi, vi) = ∑ ∆τi = ∑
|~ri+1 −~ri|

vi (24)

As a result, the optimization problem reads:

τ∗ = min
(hi ,vi ,ai

N)
τ(hi, vi), (25)

hmin ≤ hi ≤ hmax, i = 1, . . . N (26)

amin
N ≤ ai

N ≤ amax
N , i = 1, . . . N (27)

vi ≥ 0, i = 1, . . . N − 1 (28)

ai
x = −[µai

N + α(~ri, ~̇ri)]~Tx(
~̇ri) + (vi)2k(~̇ri, ~̈ri)~Rx(

~̇ri, ~̈ri) + ai
N · ~Nx(~ri), (29)

ai
z = −[µai

N + α(~ri, ~̇ri)]~Tz(
~̇ri) + (vi)2k(~̇ri, ~̈ri)~Rz(

~̇ri, ~̈ri) + ai
N · ~Nz(~ri) + g, (30)

In case of simple initial conditions, we additionally have the constraints:

v1 = v0, (31)

h1 = h0. (32)

In case of circular initial conditions, we additionally have the constraints:

v1 = vN−1, (33)

h1 = hN−1, (34)

h2 = hN . (35)

In case of simple initial conditions, the optimization problem is an NLP with 3N − 1
real-valued design variables, 5N inequality constraints and 2N + 2 equality constraints.
In case of simple initial conditions, the optimization problem is an NLP with real-valued
3N − 1 design variables, 6N inequality constraints and 2N + 3 equality constraints.

3. Results
3.1. Solution of the Discrete Optimal Control Problem with a SQP-Algorithm

At first, we present the solution of the discretized optimal control problem (25)–(30)
with the help of a SQP-algorithm as proposed by Han, and Powell [12,13]. We use circular
conditions (17), with the length of a single period of the track L = 6.0 m. The height profile
is a simple cosinus-curve with a height difference of 0.2 m between highest and lowest
point: u(x) = (1− cos(πx

3 )) · 0.1 m, and ρ = 1.225 kg
m3 For the athlete’s parameters we

take: m = 75 kg; Amax = 1.1 m2; cw = 0.3; µ = 0.02; amin
N = 0; amax

N = 2g; hmin = 0.7 m;
hmax = 1.2 m with g = 9.81 m

s2 .
We choose an interval of ∆x = 0.1 m for the spatial discretization step, and therefore,

N = 61. On this basis, the NLP (25)–(30) is formulated with 182 design variables, 305 linear
inequality constraints, and 124 nonlinear equality constraints. It is important for us to
highlight the following: (a) with 182 design variables the search is performed in a 182-real-
valued space, which is a tremendously large search space. (b) The 124 nonlinear equality
constraints restrict the feasible region to a 62-dimensional subspace. Even if this sounds
large, in fact, the feasible region is much, much smaller compared to the search space. (c) As
a result, we expect it to be non-trivial to find the small feasible solution of the optimal
control problem starting from an infeasible initial value.

Not surprisingly, it turned out, that random initial values for the search in the
182-dimensional space are in almost any case too far away from the feasible region,
such that the SQP-algorithm was unable to find the feasible region, and therefore did
not manage to solve the problem. Alternatively, we used random initial values of the
form u0 = (h0 · (1, 1, . . . 1), v0 · (1, 1, . . . 1), aN,0 · (1, 1, . . . 1)) with random numbers h0, v0,
and aN,0. With this, we solved the NLP with a set 1000 random initial conditions. From those



Sports 2023, 11, 31 8 of 14

869 SQP-runs did not converge as the algorithm was unable to find the feasible region.
And 131 SQP-runs converged to a local minimum, fulfilling the KKT-condition with
high accuracy:

|∇ f + Σλi∇gi| ≤ 10−6. (36)

In the subset of the converged SQP-runs, 96 times the algorithm converged to an
identical local minimum with τ∗ = 0.3770 s as presented in Figure 4. The remaining
35 times the algorithm converged to “exotic” local minima with unacceptable high values
of the goal function: τ∗ > 3 s. As such we can conclude that the optimal control problem
((25)–(30)) possesses several local minima, which is not surprising due to convex-concave
nature of the problem. But the best local minima can be clearly identified as the “global”
solution, and therefore we accept the local minimum presented in Figure 4 as the solution
of ((25)–(30)).

Naturally, the equality constraints are all active, and therefore their corresponding
Lagrange multipliers are positive. Beyond those, at the solution, in total 60 inequality
constraints are active with positive Lagrange multipliers. From this, we can conclude, that
we can accept the solution computed by the SQP-algorithm as the solution of the optimal
control problem.

Figure 4. Optimal movement pattern, with τ∗ = 0.3770 s, for a track of length L = 6.0 m and
a sinusoidal height profile with a difference of 0.2 m between the lowest and the highest point:
(a) track profile (dotted line), trajectory of the athlete’s COM (full line), (b) effective body height
h(t), (c) magnitude of the velocity of the COM v(t), (d) magnitude of the normal acceleration aN(t),
(e) magnitude of the acceleration of the COM a(t), and (f) magnitude of the total friction force FR(t).

The calculations were done on a standard PC. We used the SQP-algorithm proposed
by Han & Powell [12] as integrated in Matlab 2020a. Depending on the quality of the initial
value for the SQP-algorithm, approximately 200 up to 1000 iterations were required to
solve the optimal control problem with the required accuracy, which is a totally acceptable
value for such a problem. Computation time on a standard time were approximately 1 min
up to 10 min.
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The athlete moves the COM in vertical direction with a minimal effective body height
slightly after the track’s peak, and a maximal effective body height slightly after the track
has reached its valley (Figure 4a,b). Note that the athlete does not stretch his or her body
to the maximum, but only to a level slightly more than the track’s bump height. Quite
obviously, it is advantageous for the athlete to keep the COM’s movement stable on the
same height, while major movement is done by the legs, in accordance to what is observed
in sports. The magnitude of athlete’s velocity varies between 57.2 km/h and 57.6 km, where
the maximal velocity is reached slightly before the track’s valley and and minimal velocity
is slightly after the track’s peak (Figure 4c).

In our eyes, the data presented in Figure 4d deliver a good insight into the optimal
movement pattern, since the normal force aN(t) switches between 0 and 2g, which is the
maximal acceleration to be applied by the athlete. As such, the optimal movement pattern
can be understood as a jumping-flying-landing-motion. The jump is performed in such
a way that the athlete leaves the track exactly at the valley and performs a parabola-flight
over the hill. At the downhill-side of the hill, the athlete uses its maximal body force
for the landing and the preparation for the next jump. Loosely speaking, the athlete
avoids driving uphill by jumping. Instead, the athlete only drives downhill. This picture
delivers an intuitive and yet scientifically correct understanding of the energy pumping on
a one-dimensional track. In Figure 4f, we see that the friction force acting on the athlete
is largely affected by the jumping and landing. In the flying-phase the friction force is
considerably smaller than in the landing phase, since the there is no sliding or rolling
friction in athlete’s flying-phase.

3.2. Optimal Movement Patterns under Variation of Athlete’s Maximal Body Force and
Track Height

In this section, we investigate (a) the effect of maximal vertical body force, which
the athlete can apply for energy pumping, and (b) the effect of the track height, on the
horizontal velocity. The parameters are chosen as in the previous section.

For the energy pumping on a track with sinusoidal height profile and circular condi-
tions we find that there is a lower limit of athlete’s maximal body force of approx. (1.2–1.3)
g, below that the NLP does not have a solution, and accordingly energy pumping cannot
be performed. For maximal body forces above this limit, the velocity increases steadily
as shown in Figure 5 (right). Also, we see a pronounced influence of the track height on
the speed. For track heights lower than (hmax − hmin) , the velocity increases as the track
height increases. In these cases the athlete is able to jump over the roller. But as the track
height is larger than (hmax − hmin), the velocity decreases as the athlete is not able anymore
to jump over the rollers.

In Figure 5 (left), we present the optimal body force as applied by the athlete for
4 distinct values for energy pumping on a track with track height 0.20 m. We see that
the quality of the optimal movement remains untouched: In all cases we have a switch
between a flying phase and a force phase. And in all cases, the athlete applies his or her
maximal body force, but for a high maximal body force, the flying phase can be long,
and the force phase is short. On the other hand, for a small maximal body force, the athlete
can only perform a movement with a short flying phase, and the force phase needs to be
long. Clearly, the exact timing of the flying and the force phase is fundamental to achieve
optimal energy pumping.
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Figure 5. Variation of the maximal body force of the athlete on a track of length L = 6.0 m and
a sinusoidal height profile with three different heights (0.20 m; 0.40 m; 0.60 m) between the lowest
and the highest point: (left) Sinusoidal track profile with 0.20 m track height (dotted black line),
dynamics of the body force as applied by athlete for different maximal body forces for the track
height 0.2 m only. The graphics is scaled and shifted in vertical direction for clarity. (right) Variation
of the athlete’s medium velocity in x-direction under variation of the maximal body force for three
different track heights (0.20 m; 0.40 m; 0.60 m).

3.3. Qualitative Comparison of Optimal Movement Pattern with Data Derived from
Video-Recorded BMX-Athlete

Finally, we present a qualitative comparison of (a) the results achieved for the optimal
movement pattern of the COM, to (b) a single elite athlete’s movement pattern as taken from
video from a public source [22]. This video does not allow for a quantitative comparison.
The video only allows for a simple qualitative comparison. It is subject to future research to
perform more precise and controlled measurements of movement patterns of a group of
elite athletes for a more fundamental comparison.

For this, we applied manual tagging of the athlete’s bike and athlete’s body segments
(head, shoulder, arms, upper leg, lower leg) for every single picture of the video sequence
(see Figure 6). Then, the COM of the athlete and the bike was computed on the basis of
standard weight distributions for human bodies. With this, we were able to compute the
movement of the COM in the 2-dimensional space and derive COM’s distance to the track.
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Figure 6. Extraction of COM’s movement pattern from a video recording of an BMX elite athlete
during energy pumping. Left column: snapshots of athlete’s movement. Right column: Tagging of
athlete’s body segments, the bike, and the computed COM (pink cross).

As presented in Figure 7, the movement patterns are similar but not identical. They
share common features: jump phase in the uphill section of the bump, and landing phase
in the downhill section of the bump. The maximal stretching of the body is observed in
both cases slightly before the maximum of the bump.

Figure 7. Movement patterns for energy pumping on a single bump (black line): movement of the
COM as extracted from the video sequence (red line), and optimal movement pattern computed by
solving the discrete optimal control problem.
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4. Discussion
4.1. General

We present our results as a first step towards a full understanding of optimal move-
ment patterns for energy pumping. Clearly, there is a tremendous space for future research
and important improvements. In our eyes, the following future research directions seem to
be most promising, and interesting:

1. As the inverted pendulum model presented in this paper is highly simplified, we pro-
pose to increase the accuracy of the model by integrating more degrees of freedom into
the model (modeling of athlete’s joints, modeling of athlete’s equipment). With this,
the physical model of the athlete’s movement will be closer to reality, and therefore
it is more likely that concise and accurate conclusions can be drawn from the com-
puted optimal movement patterns to support athletes, and contribute to sport science.
For instance, we expect results, which are closer to reality, if the athlete does not
only have a single isolated contact point (such as in the inverted pendulum model),
but instead has multiple contact points (as it is in biking), or a line of contact points
(as it is skiing).

2. Perform high-quality measurements of movement patterns of athletes performing
energy pumping in such different disciplines, such as BMX-racing, or ski-cross. On this
basis, it would be highly interesting to be able to compare movement patterns of
athletes from different disciplines to the results of the optimal movement patterns as
presented in this paper.

4.2. Learnings for Training and Competition in Sports

From our study we can draw some conclusions for athletes and coaches engaged in
sports in which energy pumping is an success factor (like BMX racing, or ski cross):

1. The results fully agree with athlete’s experience that (a) leg force should be applied
before the bump to avoid uphill movement, and (b) in the landing or compression
phase, leg force is needed for landing.

2. In any case, if facing high or low bumps, the athlete should use his or her maximal
leg force, since the horizontal acceleration depends on the maximal leg force applied.

3. The correct and exact timing of jump and landing phase is crucial for the energy
pumping. Obviously, as horizontal velocities increase it is increasingly difficult for
the athlete to achieve the correct timing of the jumping and landing phase.

4. The optimal path can be used for evidence-based coaching.
5. As a result of our study, the major advice for athletes could be phrased in simple

words as: Avoid riding uphill, it’s better to jump over the hill. Generally when driving
downhill try to push your center of mass upwards.

4.3. Limitations

As this study is theoretical in nature, its focus lies on defining a proper dynamical
model, defining a proper continuous and discrete optimal control problem, and solving
the latter numerically according to the state-of-the-art. Therefore, it is important for us to
highlight the limitations of our work:

1. In this study there was no quantitative validation. In the future a proper quantitative
validation is required based on subject-specific scaling of the model and motion
analysis on the field.

2. While the simple inverted-pendulum model turns out to be an adequate model to
understand energy pumping in a generic way, it might be oversimplified to deliver
a detailed description of the movement. As such, in the future, we expect more
complex models will be required for a detailed description of optimal movement
patterns in energy pumping.

3. As the inverted-pendulum model possesses a single contact point between the athlete
and the ground, it might be oversimplified for a detailed description of cycling (with



Sports 2023, 11, 31 13 of 14

2 contact points), and skiing (with a extended line of contact). Therefore, in the future,
to describe the optimal movement patterns in those sports in detail an extension of
the inverted-pendulum model is required.

5. Conclusions

The inverted pendulum model, which is already highly simplified, in combination
with the numerical solution of an optimal control problem turn out to be valuable tools
to increase the fundamental understanding of the effect of energy pumping. Although,
more work has to be done to increase the accuracy of the model on one hand, and on the
other hand to provide a more exact and broader basis of experimental measurements, our
research allows already for practically relevant conclusions, and even more importantly,
provides a guide to the eye for the future research. The authors find it especially promising
to investigate in the future optimal movement patterns in other sports like gymnastics,
skiing, or track and field.
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